$$\chi = 5, 6, 7, 8, 9?$$

$$3 \square 2$$

$$\times \chi 6$$

$$1 \square 3 2$$

$$28 \square 8$$

$$3 0 \square 1 2$$

$\chi = 1$	2、3、4、5?
•	1 x 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
	<u> </u>

- 2xの特定に な条件を絞りこみ、特定する。
- A:問題を解き易い形に"

$$\chi = 5, 6, 7, 8, 9?$$

$$3 \square 2$$

$$\times \chi 6$$

$$1 \square 3 2$$

$$28 \square 8$$

$$3 0 \square 1 2$$

$\chi = 1$,	2、3、4、5?
□4)	1 χ 3 3 □ 3 □ 2 □ 1 □ 3
	96
	7 🗆
	7 <u> </u>
	0

② x の特定に不可欠な条件を絞りこみ、特定する。

A:問題を解き易い形に"

$$\chi = 5, 6, 7, 8, 9?$$

$$3 \square 2$$

$$\times \qquad \chi 6$$

$$1 \square 3 2$$

$$2 8 \square 8$$

$$3 0 \square 1 2$$

28□8 30□12 ①代入試行で全ての□を埋めるの は非効率(不可能?)&不必要。

② x の特定に不可欠な条件を絞りこみ、特定する。

A:問題を解き易い形に"

$$\chi$$
=5、6、7、8、9?

3□2

 \times
 χ 6

1□32

 \Diamond 3 χ =28 \rightarrow χ はか

 \Diamond 3 χ =28 \rightarrow χ は

 \Diamond 4 χ 4 ψ 4 ψ 5 ψ 6

3□1

3□1

3□2

 χ 50

1□32

 χ 6

1□32

 χ 6

 χ 7

 χ 7

 χ 8

 χ 9?

 $\begin{array}{c|cccc}
 & 1 & \chi & 3 \\
 & 3 & 3 & 3 & 3 \\
 & 2 & 3 & 3 & 3 \\
 & 2 & 3 & 3 & 3 & 3 \\
 & 2 & 3 & 3 & 3 & 3 \\
 & 1 & 3 & 3 & 3 & 3 \\
 & 1 & 3 & 3 & 3 & 3 \\
 & 1 & 3 & 3 & 3 & 3 & 3 \\
 & 1 & 3 & 3 & 3 & 3 & 3 \\
 & 1 & 3 & 3 & 3 & 3 & 3 \\
 & 1 & 3 & 3 & 3 & 3 & 3 \\
 & 1 & 3 & 3 & 3 & 3 & 3 \\
 & 1 & 3 & 3 & 3 & 3 & 3 \\
 & 9 & 6 & 3 & 3 & 3 & 3 \\
 & 7 & 0 & 3 & 3 & 3 & 3 \\
 & 7 & 0 & 3 & 3 & 3 & 3 \\
 & 7 & 0 & 3 & 3 & 3 & 3 \\
 & 7 & 0 & 3 & 3 & 3 & 3 \\
 & 7 & 0 & 3 & 3 & 3 & 3 \\
 & 0 & 0 & 0 & 3 & 3 & 3 \\
 & 0 & 0 & 0 & 3 & 3 & 3 \\
 & 0 & 0 & 0 & 3 & 3 & 3 \\
 & 0 & 0 & 0 & 3 & 3 & 3 \\
 & 0 & 0 & 0 & 3 & 3 & 3 \\
 & 0 & 0 & 0 & 3 & 3 & 3 \\
 & 0 & 0 & 0 & 3 & 3 & 3 \\
 & 0 & 0 & 0 & 0 & 3 & 3 \\
 & 0 & 0 & 0 & 0 & 3 & 3 \\
 & 0 & 0 & 0 & 0 & 3 & 3 \\
 & 0 & 0 & 0 & 0 & 3 & 3 \\
 & 0 & 0 & 0 & 0 & 3 & 3 \\
 & 0 & 0 & 0 & 0 & 3 & 3 \\
 & 0 & 0 & 0 & 0 & 3 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 3 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0$

 $\chi = 1, 2, 3, 4, 5$?

- ①代入試行で全ての口を埋めるの は非効率(不可能?)&不必要。
- ②χの特定に不可欠な条件を絞りこみ、特定する。

A:問題を解き易い形に"

$$\chi$$
=5、6、7、8、9?

3 □ 2

 \times χ 6

1 □ 3 2

 \Diamond 3 χ = $28 \rightarrow \chi$ は 4 χ 9

 \Diamond 3 χ = $28 \rightarrow \chi$ は

 \Diamond 2 χ = $28 \rightarrow \chi$ は

 \Diamond 2 χ = $28 \rightarrow \chi$ は

 \Diamond 3 χ = $28 \rightarrow \chi$ は

 \Diamond 2 χ = $28 \rightarrow \chi$ は

 \Diamond 3 χ = $28 \rightarrow \chi$ は

①代入試行で全ての口を埋めるの は非効率(不可能?)&不必要。

$\chi = 1$,	2,3,4,5?
□4)	1 χ 3 3 \square 3 \square 2 \square 1 \square 3 9 6 7 \square 7 \square
	0

② x の特定に不可欠な条件を絞りこみ、特定する。

A:問題を解き易い形に"

Q. p.37の問題(1)、(2)の解法の"共通点"は?

 $\chi = 1, 2, 3, 4, 5$?

- ①代入試行で全ての口を埋めるのは非効率(不可能?)&不必要。
- ② x の特定に不可欠な条件を絞りこみ、特定する。

A:問題を解き易い形に"

Q. p.37の問題(1)、(2)の解法の"共通点"は?

$$\chi = 5, 6, 7, 8, 9$$
?

3 □ 2

 $\times \chi 6$

1 □ 3 2

 $0 \times \chi 6$

1 □ 3 2

 $0 \times \chi 6$
 $0 \times \chi$

- ①代入試行で全ての口を埋めるのは非効率(不可能?)&不必要。
- ② x の特定に不可欠な条件を絞りこみ、特定する。

A:問題を解き易い形に"

Q. p.37の問題(1)、(2)の解法の"共通点"は?

$$\chi = 5, 6, 7, 8, 9$$
?

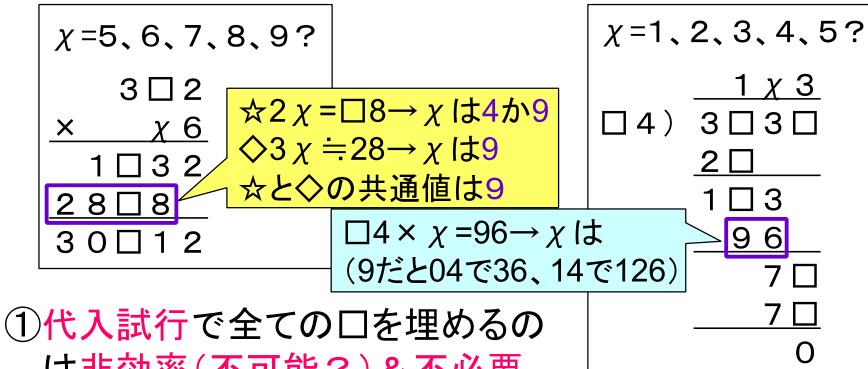
3 □ 2

 $\times \chi 6$

1 □ 3 2

 $0 \times \chi 6$

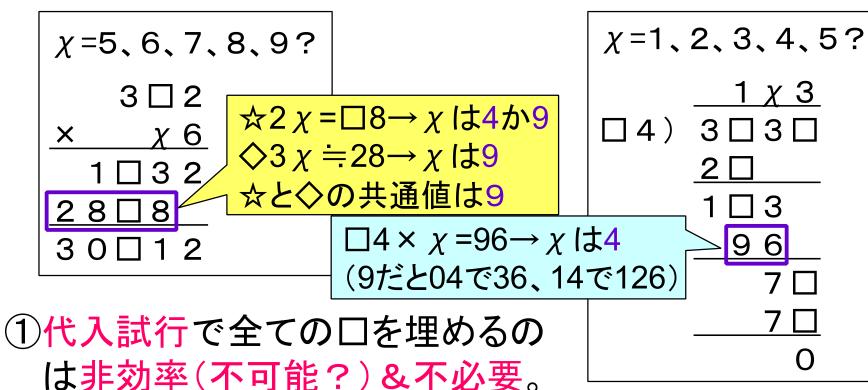
1 □ 3 2


 $0 \times \chi 6$
 $0 \times \chi$

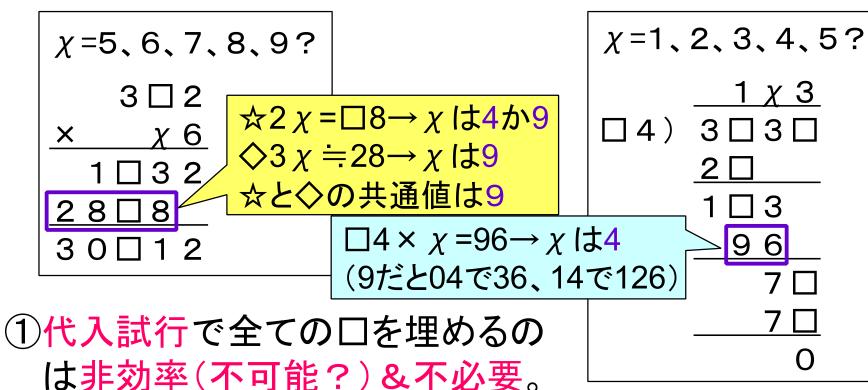
①代入試行で全ての口を埋めるの は非効率(不可能?)&不必要。

$\chi = 1$,	2,3,4,5?
•	1 x 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

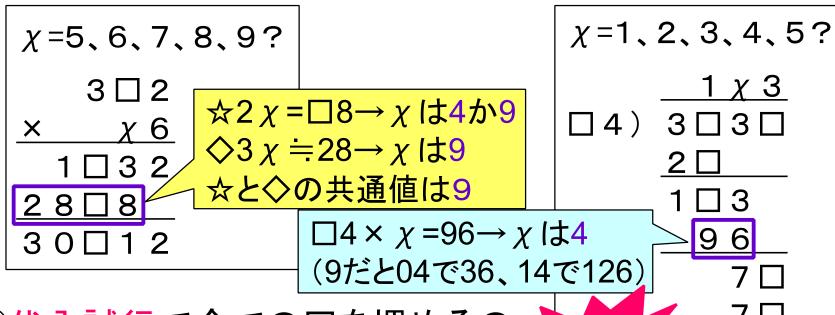
② x の特定に不可欠な条件を絞りこみ、特定する。


A:問題を解き易い形に"

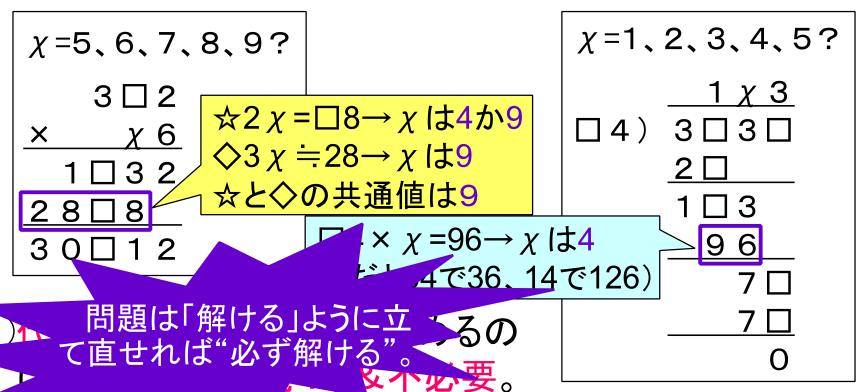
は非効率(不可能?)&不必要。


② x の特定に不可欠な条件を絞りこみ、特定する。

A:問題を解き易い形に"

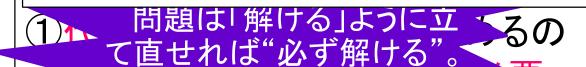


② x の特定に不可欠な条件を絞りこみ、特定する。


A:問題を解き易い形に""ている点。

② x の特定に不可欠な条件を絞りこみ、特定する。

- ①代入試行で全ての口を埋めるの 選択肢も は非効率(不可能?)&不必要。 (実は) 不要
- ② x の特定に不可欠な条件を絞りこみ、特定する。


② x の 特定に不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直	「す"方法の1つが""
「鶴(x)と亀(y)で20、	、足は72。 亀は何匹? J(p.35)
①立式:	e1
	··e2
②整理:-)	••e1 × 2
x=	
1 問題は 解ける」で直せれば 必ず角	ようにソ るの
	文个必要。

② χ の特定に不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

- ①立式: ··e1
 - ••e2
- ②整理:-) ··e1×2

_____7 <u>__</u> 0

② x の特定に不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

(1)	問題は「解ける」ようにエンるの
	て直せれば"必ず解ける"。
	(人)

_____7 <u>__</u> O

② x の 特定に不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

$$2x+4y=72\cdot \cdot e2$$

1)1	問題は「解ける」ようにユースの
	て直せれば"必ず解ける"。

_____7 <u>___</u> 0

② χの特定に

不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

$$2x+4y=72\cdot \cdot e2$$

(1)	問題は「解ける」ように立てるの
	て直せれば"必ず解ける"。

② χ の 特定に <u>不可欠</u>な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

$$2x+4y=72\cdot \cdot e2$$

$$x = \leftarrow y = \leftarrow 2y = 32$$

(1)	問題は「解ける」ように立てるので直せれば"必ず解ける"。
	て直せれば"必ず解ける"。
	以

② χの特定に

不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

$$2x+4y=72\cdot \cdot e2$$

$$x = \leftarrow y = 16 \leftarrow 2y = 32$$

(1)	問題は「解ける」ようにエースの
	て直せれば"必ず解ける"。
	大小小

_____7 <u>___</u> 0

② x の 特定に不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

$$2x+4y=72\cdot \cdot e2$$

$$x=4 \leftarrow y=16 \leftarrow 2y=32$$

1	問題は「解ける」ように立てるので直せれば"必ず解ける"。
	て直せれば、必ず解ける。

② χの特定に

不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

①立式: x+ y=20··e1

$$2x+4y=72\cdot \cdot e2$$

②整理:-)2x+2y=40··e1×2

$$x=4 \leftarrow y=16 \leftarrow 2y=32$$

■これだけでは" "不在!

1 問題は「解ける」ように立てるので直せれば"必ず解ける"。

_____7 <u>___</u>

② x の 特定に不可欠な条件を絞りこみ、特定する。

☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

$$2x+4y=72\cdot \cdot e2$$

$$x=4 \leftarrow y=16 \leftarrow 2y=32$$

■これだけでは"理解"不在!

1 問題は「解ける」よっに立てるので直せれば"必ず解ける"。

_____7 <u>___</u> 0

② x の 特定に不可欠な条件を絞りこみ、特定する。

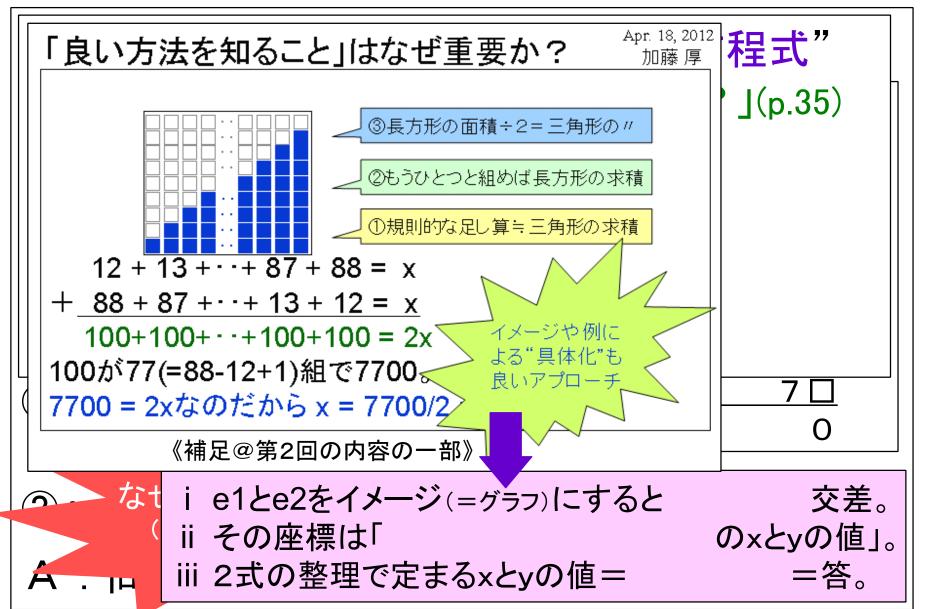
☆解き易く"立て直す"方法の1つが"方程式" 「鶴(x)と亀(y)で20、足は72。亀は何匹?」(p.35)

$$2x+4y=72\cdot \cdot e2$$

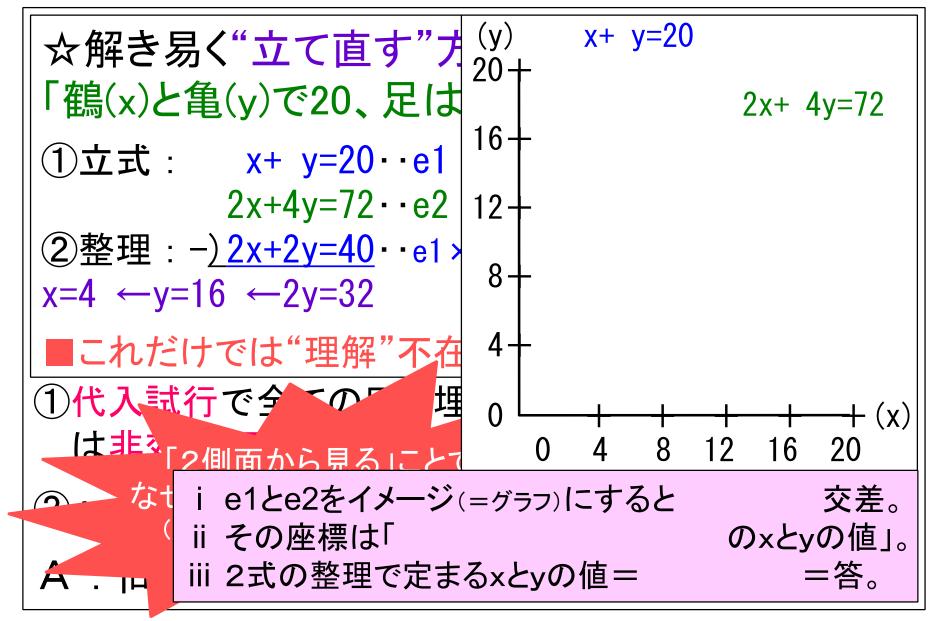
$$x=4 \leftarrow y=16 \leftarrow 2y=32$$

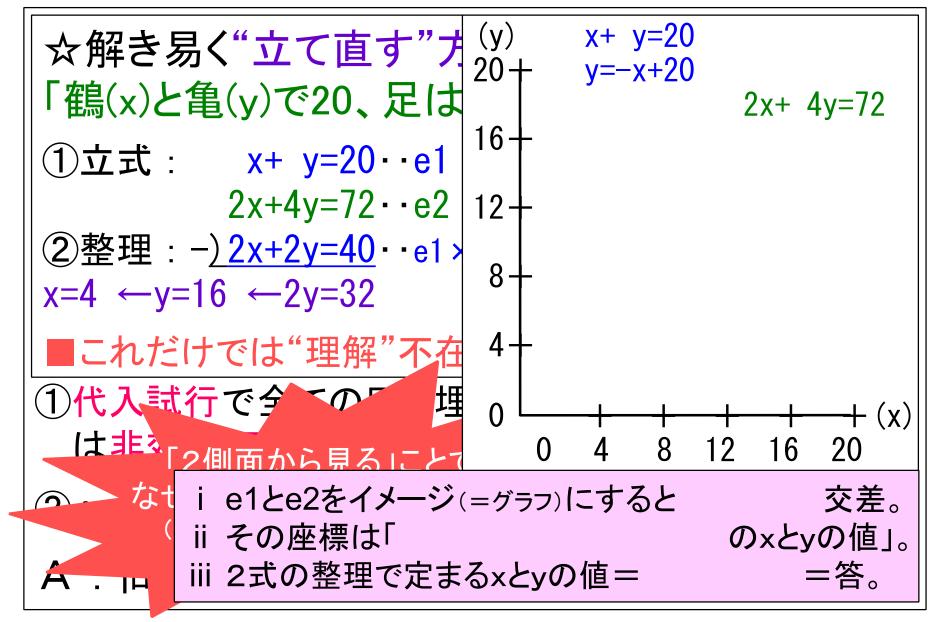

■これだけでは"理解"不在!

1代入試行で全ての 埋めるの はままる


____7 <u>□</u> 0

○ なぜ答が得られるのか? ~ 絞りこみ、特定する。 (発問 by 乗原先生@前回)

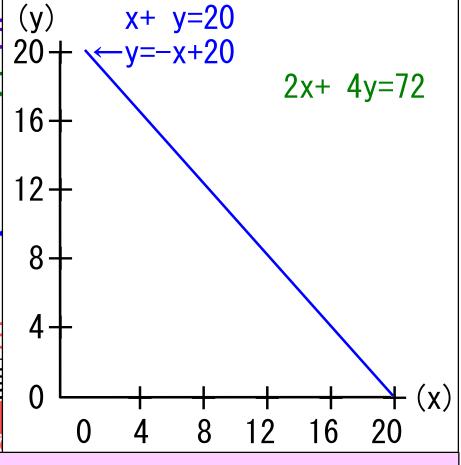

A · In こっつがい形に"立て直し"ている点。


May 16, 2012 加藤厚

May 16, 2012 加藤厚

May 16, 2012 加藤厚

☆解き易く"立て直す"方 「鶴(x)と亀(y)で20、足は


①立式: x+ y=20··e1

②整理:-)2x+2y=40··e1>

 $x=4 \leftarrow y=16 \leftarrow 2y=32$

■これだけでは"理解"不在

1代入試行で全ての「埋

う なt i e1とe2をイメージ(=グラフ)にすると

ii その座標は「

iii 2式の整理で定まるxとyの値=

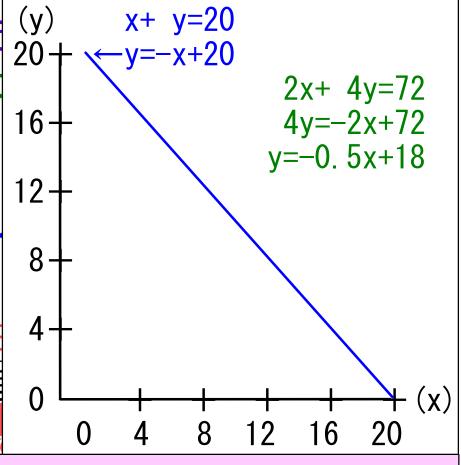
交差。 のxとyの値」。

=答。

A . | H

①立式: x+ y=20··e1

$$2x+4y=72 \cdot \cdot e2$$


②整理:-)2x+2y=40··e1>

 $x=4 \leftarrow y=16 \leftarrow 2y=32$

■これだけでは"理解"不在

1代入試行で全ての「埋

2個面から見ること

う なt i e1とe2をイメージ(=グラフ)にすると

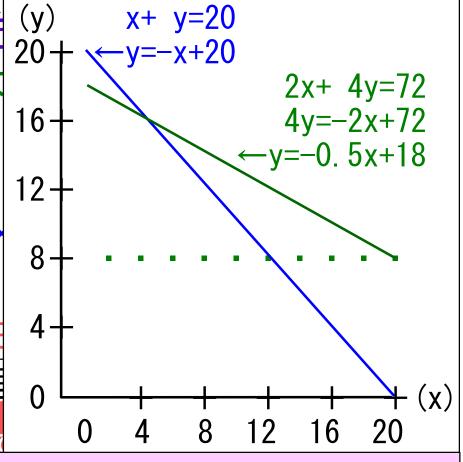
ii その座標は「

iii 2式の整理で定まるxとyの値=

交差。 のxとyの値」。 =答。

A . 14

①立式: x+ y=20··e1


$$2x+4y=72\cdot \cdot e2$$

②整理:-<u>)2x+2y=40</u>··e1 >

 $x=4 \leftarrow y=16 \leftarrow 2y=32$

■これだけでは"理解"不在

1代入試行で全ての「埋

う なt i e1とe2をイメージ(=グラフ)にすると

ii その座標は「

iii 2式の整理で定まるxとyの値=

交差。 のxとyの値」。

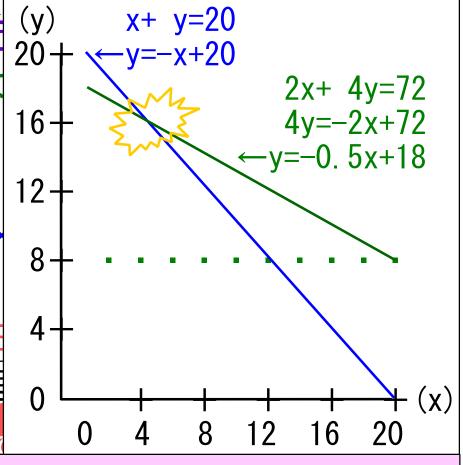
一答。

A . Ih

☆解き易く"立て直す"方 「鶴(x)と亀(y)で20、足は

①立式: x+ y=20··e1

 $2x+4y=72\cdot \cdot e2$


②整理:-<u>)2x+2y=40</u>··e1 >

 $x=4 \leftarrow y=16 \leftarrow 2y=32$

■これだけでは"理解"不在

1代入試行で今~の「埋

2個面から見ること

i e1とe2をイメージ(=グラフ)にすると

ii その座標は「

iii 2式の整理で定まるxとyの値=

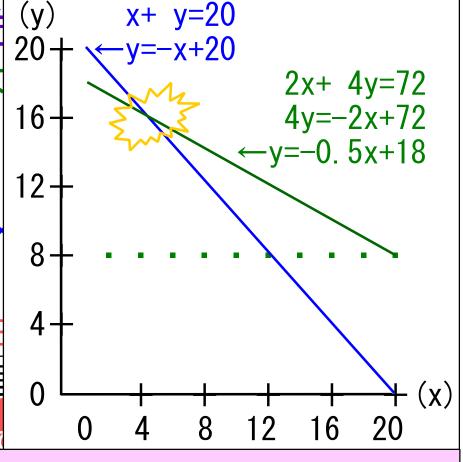
交差。 のxとyの値」。

一答。

 $A \cdot \mu$

☆解き易く"立て直す"方 「鶴(x)と亀(y)で20、足は

①立式: x+ y=20··e1


$$2x+4y=72\cdot \cdot e2$$

②整理:-<u>)2x+2y=40</u>··e1 >

$$x=4 \leftarrow y=16 \leftarrow 2y=32$$

■これだけでは"理解"不在

1代入試行で全ての「埋

つなt i e1とe2をイメージ(=グラフ)にすると1点でのみ交差。 ii その座標は「のxとyの値」。

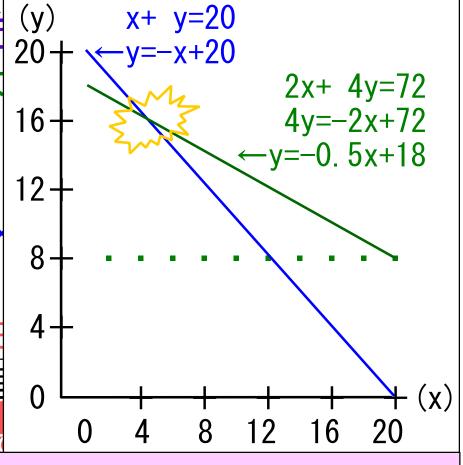
iii 2式の整理で定まるxとyの値=

=答。

A . 14

☆解き易く"立て直す"方 「鶴(x)と亀(y)で20、足は

①立式: x+ y=20··e1


$$2x+4y=72 \cdot \cdot e2$$

②整理:-<u>)2x+2y=40</u>··e1 >

$$x=4 \leftarrow y=16 \leftarrow 2y=32$$

■これだけでは"理解"不在

1代入試行で全ての「埋

っ なt i e1とe2をイメージ(=グラフ)にすると1点でのみ交差。

ii その座標は「2式を同時に満たす唯一のxとyの値」。

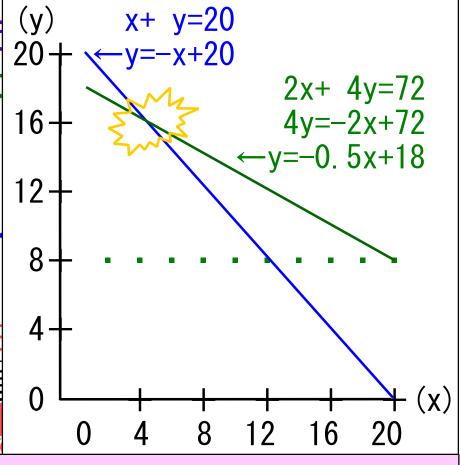
iii 2式の整理で定まるxとyの値=

=答。

A . | H

☆解き易く"立て直す"方 「鶴(x)と亀(y)で20、足は

①立式: x+ y=20··e1


$$2x+4y=72\cdot \cdot e2$$

②整理:-)2x+2y=40··e1>

$$x=4 \leftarrow y=16 \leftarrow 2y=32$$

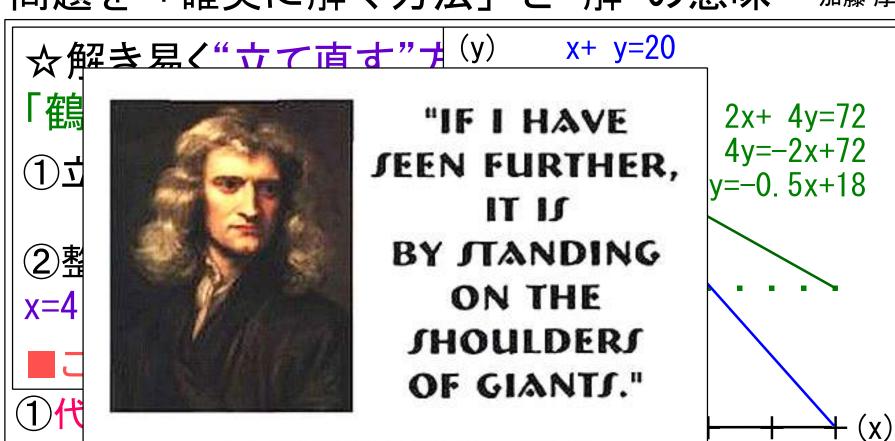
■これだけでは"理解"不在

1代入試行で全ての「埋

っ なt i e1とe2をイメージ(=グラフ)にすると1点でのみ交差。

ii その座標は「2式を同時に満たす唯一のxとyの値」。

iii 2式の整理で定まるxとyの値=交点の座標=答。


A . 14

16

20

問題を「確実に解く方法」と"解"の意味

ISSAC NEWTON (1643 - 1727)

つ な

i e1とe2をイメージ(=グラフ)にすると1点でのみ交差。

ii その座標は「2式を同時に満たす唯一のxとyの値」。

iii 2式の整理で定まるxとyの値=交点の座標=答。

```
★一人目の巨人:
             ★二人目の巨人:
   学」の創始者
                 」(学)の考案者
不明な値を含む式の整理で
              数の関係は、平面や空間上
値が定まれば、それが答。
              の図で表現・検討できる。
```

```
★一人目の巨人:
             ★二人目の巨人:
「代数学」の創始者
                 」(学)の考案者
不明な値を含む式の整理で
              数の関係は、平面や空間上
値が定まれば、それが答。
              の図で表現・検討できる。
```


al-Khwārizmī(780?-850?) Łal-jabr↑

★一人目の巨人:

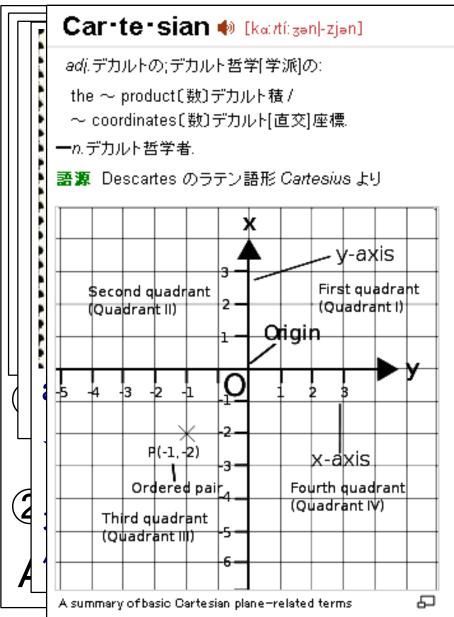
「代数学」の創始者 不明な値を含む式の整理で 値が定まれば、それが答。

★二人目の巨人:

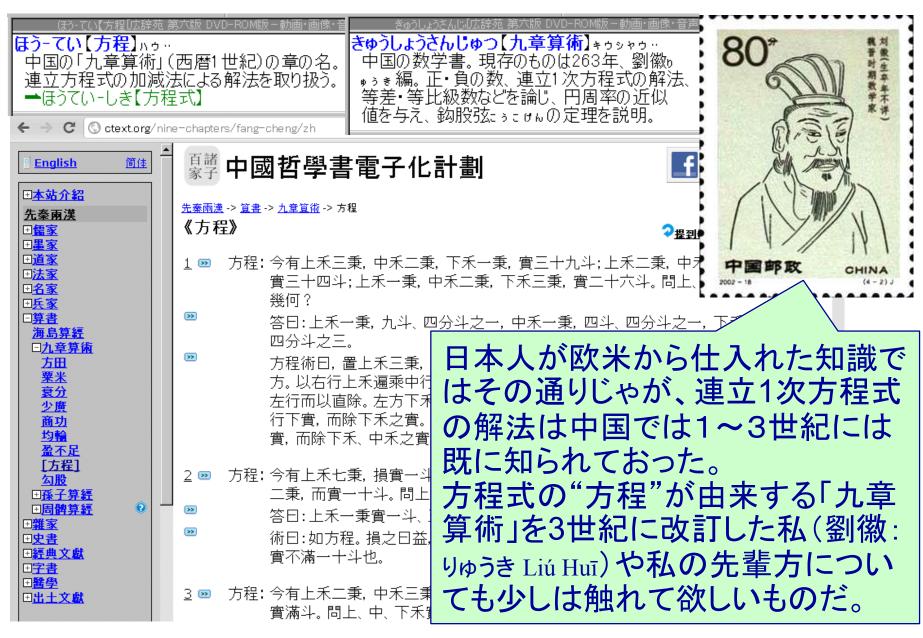
」(学)の考案者 数の関係は、平面や空間上 の図で表現・検討できる。

al-Khwārizmī(780?-850?) Łal-jabr↑

★一人目の巨人: 「代数」は英語で"algebra" ★二人目の巨人:


「代数学」の創始者 不明な値を含む式の整理で 値が定まれば、それが答。

「座標」(解析幾何学)の考案者 数の関係は、平面や空間上 の図で表現・検討できる。


「代数学」の創始者 不明な値を含む式の整理で 値が定まれば、それが答。

「座標」(解析幾何学)の考案者数の関係は、平面や空間上の図で表現・検討できる。

「座標」(解析幾何学)の考案者数の関係は、平面や空間上の図で表現・検討できる。

